Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Fabric Type and Construction on Automotive Seating Comfort

2013-04-08
2013-01-0654
The interface between human body and automotive seat contours is seat upholstery. Seating comfort has a functional correlation to the upholstery. Two seats having different upholstery will give different comfort perception. Even an ergonomically designed seat if fitted with poor quality fabric will subdue the seat comfort drastically. The effect of fabric comfort ranges from initial short term to long term comfort, driven by properties like wick-ability and factors like thermal stress. Beyond material characteristics, fabric fit also plays an important role. This paper analyses the effect of fabric parameters and construction on automotive seat comfort. A comprehensive comparative study is followed by systematic analysis and comfort improvement scope through upholstery. The research is to conclude potential of the seat fabric in enhancing the automotive seating comfort within stipulated constraints of fabric properties and cost.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
Technical Paper

Optimizing Vehicle NVH Using Multi-Dimensional Source Path Contributor Paradigm.

2018-06-13
2018-01-1542
Automotive Industry is moving towards lightweight vehicle design with more powerful engines. This is increasing a demand for more optimized NVH design. Source-Path-Contributor (SPC) analysis is one of the ways to draw a holistic picture of any NVH problem. In this paper, an NVH problem of low frequency booming noise and steering vibration has been studied in a development vehicle. All three dimensions of SPC paradigm were looked at to propose a feasible and optimized solution at each level of Source, Path and Contributor model. A classical transfer path analysis (TPA) has been done to identify the highest contributing path: transmission mount and suspension arm. Optimization of suspension bush parameter has been carried out using dynamic elastomer testing facility for an improved NVH performance. After identifying source as engine a study of torsional fluctuations due to gas pressure and torsional resonances has been carried out in order to achieve a feasible solution at source.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Development of Test Method to Validate Synchronizer Ring Design for Torsional Fluctuations in Manual Transmission

2016-02-01
2016-28-0012
Manual transmissions dominate the Indian market for their obvious benefit of low cost and higher mechanical efficiency resulting in higher fuel economy. Synchronizer system in manual transmission enables smoother and quieter gear shifting. Synchronizer ring is the key element which provides the necessary frictional torque to synchronize the speed of gear and sleeve for smooth shifting. During vehicle running, synchronizer rings are free to rattle inside the indexing clearance. High engine torsional excitation and low clutch dampening can result into increased fluctuation of the input shaft of transmission. High fluctuation or lower contact area of synchronizer ring can lead to damage on the index area. This damage may cause hard gear shifting and gear shift blockage in case of extreme damage.
Technical Paper

Hybrid Controls Comparison on HILs Using a Modular Soft Platform

2016-02-01
2016-28-0026
Hybrid Electric Vehicle (HEV) Controls Development is an important aspect to realize the goals of Powertrain Electrification i.e. fuel economy and emission improvement. Keeping that in mind, development engineers need to formulate numerous control strategies. Once the control strategy is evaluated and frozen, it typically does not change from one vehicle model application to another. However, it may happen that Electronic Control Unit (ECU) manufacturer may change depending on the sourcing strategy. Therefore, in order to maintain uniformity, it may be required to compare control strategy of a finished ECU product frozen for one model application to be compared with new ECU sourced through another manufacturer. This paper discusses a methodology to compare control strategy of two ECU’s sourced from different ECU manufacturers with identical control requirements.
Technical Paper

Simulating Real World Driving: A Case study on New Delhi

2016-02-01
2016-28-0236
In the Indian Context, Fuel Economy of a vehicle is one of key elements while buying a Car. The fuel economy declared by OEMs (Original Equipment Manufacturers) is one of the key indicators while assessing the fuel economy. However it is based on a standard driving cycle and evaluated under standard conditions as mandated by emission legislation. As the driving pattern has a major influence on fuel economy, the objective of this paper is to study real world driving patterns and to define a methodology to simulate a real world driving cycle. A case study was done on Delhi City, by running a fleet of vehicles in different traffic conditions. Thereafter data analysis like acceleration %, specific energy demand per distance, Acceleration vs. Vehicle Speed distribution etc. was done with the help of MATLAB. The final validation of cycle was done by comparing Lab results with on-road Fuel Economy data.
Technical Paper

Challenges in Developing Low Rolling Resistance Tyre

2015-03-10
2015-01-0053
Vehicles in India will soon come with star ratings, signifying how environment-friendly they are. The OEM's have braced to improve fuel economy of their existing & upcoming models. Tyre rolling resistance is one of the significant factors for vehicle fuel consumption. Improvement in Fuel consumption is always a prime focus area & to improve it all major factors are considered. In newly launched models, the low rolling resistance tyre development was initiated. The project is challenging as it requires not only achieving low rolling resistance in smaller size tyres (12″ to 13″) but also required to meet other critical vehicle performance parameters like ride, handling, NVH & durability. Effects of Tyre construction, rubber compound were analyzed to achieve lower rolling resistance and better durability of tyre. In addition, the factors affecting the rolling resistance of tyre like inflation pressure, load, and speed in smaller tyre sizes (12″ to 13″) are discussed in this paper.
Technical Paper

Design Considerations for Plastic Fuel Rail and Its Benefits

2014-04-01
2014-01-1041
Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
Technical Paper

Design Optimization of Trunk Lid Torsion Bar Type Trunk Lid Pop Up Mechanism

2019-10-11
2019-28-0111
Trunk lid (TL) can be opened using hydraulic or pneumatic balancers, coil springs, torsion bars or combination of the above. TL Opening Mechanism specific to Trunk Lid Torsion Bar (TLTB) is being discussed in the paper. After de-latching, TL should open smoothly and stop at such a height that it is visible from driver seat. The system consists of a four bar linkage mechanism, in which the fixed link is formed by BIW Bracket. Connecting link, TL Hinge Arm and Torsion bar arm form the other three links. Hinge has its one end attached to TL and the other end to BIW bracket. Torsion bar arm transfers torque to TL hinge through the connecting link. Major challenges in designing TLTB mechanism are part tolerances, C.G position and Weight variations in individual parts, Torsion bar Raw Material variation, uncertain friction in the system etc.
Technical Paper

Design Optimization of Front Hood Structure for Meeting Pedestrian Headform Protection in an Existing Vehicle

2019-04-02
2019-01-0615
Automotive industry today faces the unprecedented challenges both in terms of adapting to changing customer demands in terms of vehicle aesthetics, features or performance as well as meeting the mandatory regulatory requirements, which are being regularly upgraded and becoming stringent day by day. Vehicle hood, being part of vehicle front fascia, needs to fulfill the requirement of vehicle aesthetics as its primary condition. At the same time, every automobile manufacturer has a lineup of older platforms, which are in production and needs to comply with upcoming stricter safety norms, having a structure in under hood area designed as per older philosophy, which further reduces the space available for energy absorption. This makes the structure optimization in vehicle hood area much more challenging. Pedestrian protection - an upcoming regulation in India, has seen some major development in recent times.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
Technical Paper

Determination of the Polyurethane Parameters for Riding Comfort Evaluation in Automobile Seating Application

2019-04-02
2019-01-0931
Riding comfort for automobile seating can be classified into two categories, long time riding comfort and short term riding comfort. The attributes that govern the riding comfort includes static spring constant and energy lost due to hysteresis. The emerging trend towards long term riding comfort could be governed by the above mentioned factors. The hysteresis loss characteristic is related to Poly-Urethane (PU) properties used extensively in automotive seating application. The nature with which the energy is released considering the same material and varying the hardness directly contributes to the comfort analysis for automobile seating and vice versa. Two curves can define the same area but the loading and unloading trend for the two cases could be different and so be the riding comfort. A conclusion would be drawn by obtaining hysteresis loss rate by changing the different parameters (hardness, density). One parameter would be varied by keeping the others constant.
Technical Paper

Intake and Exhaust Ports Design for Tumble and Mass Flow Rate Improvements in Gasoline Engine

2019-04-02
2019-01-0763
In recent years, world-wide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, as defined by international regulatory authorities. Many technologies have been already developed, or are currently under study, to meet legislated targets. In-line with above objective, the enhancement of turbulence intensity inside the combustion chamber has a significant importance which contributes to accelerating the burning rate, to increase the thermal efficiency and to reduce the cyclic variability [9]. Turbulence generation is mainly achieved during the intake stroke which is strictly affected by the intake port geometry, orientation and to certain extends by combustion chamber masking. Conservation of turbulence intensity till 700~720 crank angle (CA) is achieved by optimized shape of combustion chamber geometry and piston bowl shape.
Technical Paper

Effect of Fabric Parameters on Phenomena of Electrostatic Charge Generation

2019-04-02
2019-01-0464
Electrostatic charge generation in fabric is a common phenomenon. This phenomenon of charge generation & transfer of the same to human body is more in case of fabrics made of polyester yarns due to interface property of the material. The charge generation may result in attraction of dust on the fabric surface, clinginess & may also result in uncomfortable shock to the human body. This situation is attributed to various parameters such as fabric construction, yarn properties, yarn finish & various coating on the yarn. Since, polyester fabric is prime material used in seating; there have been many incidences of rubbing of seat fabric to human body, resulting in generation of static charge. This study focuses on understanding the effect of various fabric parameters on electrostatic charge generation. The study will also look into various potential solutions to reduce the charge generation with their merits and demerits.
Technical Paper

SmartPlay Studio: A Connected Infotainment Development

2019-11-21
2019-28-2440
Infotainment has always been an important aspect of life which has made its way to car design. The cars today are much more advanced compared to their predecessors. The in-vehicle Infotainment advancements have followed the consumer electronics market in terms of technologies such as Touchscreen; App based Navigation, Voice Assistant and other multimedia services. This trend is going to expand further as smartphones have revolutionized the Infotainment domain with awareness and accessibility to customers. The Infotainment system in the cars are expected to be connected not only to the cloud but various vehicle controllers to display host of information & controls at customer`s fingertips. To design a system that supports connectivity to both cloud and vehicle is challenging in terms of cost and design for the OEMs. With focus on Indian market condition and global trends, this paper analyzes the customer expectation for Connected Infotainment system.
Technical Paper

Study of Effect of Variation in Micro-Geometry of Gear Pair on Noise Level at Transmission

2015-01-14
2015-26-0130
Gear noise and vibration in automobile transmissions is a phenomenon of great concern. Noise generated at the gearbox, due to gear meshing, also known as gear whine, gets transferred from the engine cabin to the passenger cabin via various transfer paths and is perceived as air borne noise to the passengers in the vehicle. This noise due to its tonal nature can be very uncomfortable to the passengers. Optimizing micro-geometry of a gear pair can help in improving the stress distribution on tooth flank and reducing the sound level of the tonal noise generated during the running of the gearbox when that gear pair is engaged. This technical paper contains the study of variation in noise level in passenger cabin and contact on tooth flank with change in micro-geometry parameters (involute slope and lead slope) of a particular gear pair. Further scope of study has been discussed at the end of the paper.
Technical Paper

Optimization of Bumper Beam Structure for Pedestrian Protection and Low Speed Bumper Impact

2016-02-01
2016-28-0210
The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space. This paper outlines vehicle case study in order to optimize the design of Bumper Beam structure, for complying with regulatory requirements while satisfying the styling intent.
Technical Paper

Thermal Radiation Heat Transfer Model and Its Application for Automobile Exhaust Components

2016-02-01
2016-28-0051
Shielding vehicle underbody or engine room components from exhaust heat is becoming a difficult task with increasing packaging constraints, which lead to the proximity of components with high temperatures of the exhaust systems. Heat insulators are provided to protect various components from exhaust system parts. Generally the requirement of heat insulators are fixed on the basis of benchmarked temperatures measured on vehicles with similar layout, during the initial phase of vehicle design. Also various CFD techniques are available to predict the surface temperatures on components in order to determine the necessity of a heat insulator. The aforementioned techniques use radiation and convection heat transfer effects on a complete vehicle model and the overall process generally takes considerable time to provide the results. This paper deals with a theoretical approach to predict the temperatures on nearby components due to exhaust system heat.
X